
Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 1 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

The Search for Zero-Defect Code

Brian Button
Agile Solutions Group

St. Louis, MO
http://www.agilesolutionsgroup.com
bbutton@agilesolutionsgroup.com

9/6/03

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 2 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

Agenda

● Project Description
● Methodology
● Architecture
● Design
● Conclusions and Lessons Learned

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 3 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

Project Description and Overview

● March, 2003
– Email message to local mailing list

– Responded, selling Agile Methods and TDD

– Those skills were differentiator

● Packaging Conveyor control system
– Prime contractor communicated with client

– Hardware contractor built the hardware

– We built the software

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 4 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

Hardware Description

● Input Conveyor
– Initial bar code reader

– Product catalog inserters controlled

● Exit Conveyor
– Cold sealer to wrap brown paper around item

– Label Printer to affix shipping label

– Exit bar code reader to verify correct label on
correct package

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 5 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

More Hardware Description

● Conveyor belt hardware controller
– PLC provided by hardware vendor

– Communicated to via serial port

– Serial protocol was industry standard DirectNet

● Our server
– Linux box running Knoppix/Debian

– Serial ports for bar code readers and PLC

– Parallel port for label printer

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 6 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

What did I have to control?

● Software had to
– Read from both bar code reader serial ports

– Communicate to PLC via its serial port

– Send print jobs to printer

– Poll PLC for events

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 7 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

System Parameters

● Original specs had encoder on conveyor that
would send event every time belt moved 1”
– 10 Hz tick rate

– This tick concept became key architecture
concept (more later)

● Rapid processing cycle of 10 Hz led me to
implement system in C++ rather than Java,
Python, Ruby, etc.

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 8 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

Original Requirements

● Requirements agreed to by hardware vendor in
April or so

● Package scanned at entry
– DB lookup based on bar code

– Send command to inserters to add correct catalog

– Format shipping label

– Queue print job

– If anything failed, stop system

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 9 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

More Requirements

● PLC would tell me when package exited cold
sealer

● Verify scanner would give me bar code to
check against expected value. If no match, stop
system.

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 10 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

Oh, Yeah

● Just to add a bit of excitement to the project, I
would not be able to see the hardware until
integration time.
– Scared the hell out of me

– Communicated my fear

– No resolution

– Scared the hell out of me

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 11 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

Initial Architecture

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 12 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

Initial Architecture

● Learned the basics of the system while in
California

● Full of excitement, I implemented an initial
architectural framework on plane ride home

● Settled on interesting metaphor for this system.
● After much thought, much consideration, after

much consternation, I decided that my
metaphor would be..........

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 13 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

My Metaphor

● A Conveyor Belt!
● Elegant architecturally

– There were two conveyor belts

– Defined Station for each processing element
● ScanStation, PrintStation, VerifyStation, Terminal

– Packages added to input conveyor when input bar
code reader read a bar code

● When created, packages knew their location (tick0), got
list of all Stations.

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 14 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

More Metaphor

– For each tick, each Package was told to advance

– Package iterated through all its Stations, telling it
that a new location was available.

– Stations knew their own locations

– If Package was in Station, Station did the right
thing.

● So friggin' elegant!

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 15 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

Oops!

● Initial architectural framework was developed
in a vacuum.

● There was no working code that proved it to be
correct.

● It was close, but not quite.
● That baggage slowed me down over next

couple of weeks.
● Refactored that baggage out to go faster.

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 16 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

Multithreading?

● It seems like a lot is going on all at once.
● Screams out for multithreading
● How to do that and keep code simple enough

that I can get it right?

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 17 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

Separation of Concerns

● Primary architectural concern is to keep
separate concerns separate in code

● Threading and business logic are two separate
concerns.
– Should be in different places

● Failure to do this mixes threading logic into
business code, making both harder to test

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 18 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

Development Goal

● Goal was to develop code single threaded to get
business logic correct and patch in threading
later.

● A little fearful about this
● Worked beautifully
● Trick to make it work was Active Object

pattern
– www.cs.wustl.edu/~schmidt/PDF/Act-Obj.pdf

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 19 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

Implementation Begins

● TDD All The Way!!!
● Began writing tests for most simple thing I

could think of
– ScanStation Operation

● PackageProcessingAtScan
● PackageAdvancesThroughTicks
● PackageHasStopsAssociatedWithIt
● SingleWidthStationsAreOK
● etc

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 20 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

Implementation Continues

● Continued writing tests for base features
● After they worked, wrote tests for serial ports,

bar code readers, printers, etc.
● System was 90% complete
● Then it happened...

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 21 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

Requirements Changes!!!

● Remember that tick that became part of the
architecture?

● Hardware vendor unilaterally changed their
mind.
– No encoder, no ticks, no location information

– Major architectural change
● Changed from location-based to event-based

architecture

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 22 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

Results of Requirements Change

● No problem!
● TDD worked!
● System was loosely coupled
● Tore out heart of application and started over
● Reimplemented core of system

– Brought over extra classes as they were needed

– 5 days to reimplement whole core

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 23 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

Detailed Look at Code

● Enough of this talking
● Let's see some tests and code!

– In order of interest to me, not implementation
order

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 24 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

Subsystem Diagram

● Independent Subsystems in MPS

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 25 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

How do subsystems communicate?

● Each subsystem represents an independent
activity

● Any of them could be active at any time
● Implies multithreading and all its associated

problems.
● Active Object pattern designed to solve this.

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 26 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

Active Object

● Active Object pattern separates act of invoking
a method from method execution
– Caller invokes method and returns

– Receiver executes method in its own thread and
calls back results in same thread

– Any results that cross to another Active Object
have to return them using the same mechanism

● Result is that each Active Object is really
single threaded within itself

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 27 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

Active Object Sequence Diagram

● Client calls funcA()
in his thread, msg
created and queued.

● ActiveObject runs in
its own thread,
dequeues the msg,
and executes it

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 28 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

Producer/Consumer Queue

● Main architectural class of entire project
● Accepts msgs queued in thread of caller
● Returns them to Active Objects in AO's own

thread.
● This class has got to work, or nothing else will.

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 29 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

Producer/Consumer Queue Tests

TEST(putOneOnTakeOneOff, PCQ)
{
 ProducerConsumerQueue<int> queue;

 Producer p(queue);
 Consumer c(queue);

 boost::thread consumerThread(c);
 boost::thread producerThread(p);

 producerThread.join();
 consumerThread.join();

 CHECK(queue.isEmpty());
}

● First unit test
– Producer and

Consumer are
defined in test case

– Producer adds one
int to queue

– Consumer pulls it off
in different thread

– Queue should be
empty at end

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 30 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

Producer/Consumer Queue Tests
(cont)

● Second test – stress test
– CountingConsumer like Consumer, but it also

counts number of ints removed from queues

– CountingProducer adds an int whose value
increases monotonically

– Test adds 600000 ints through 5
CountingProducers and confirms that they are all
pulled off successfully

– Just to give confidence that queue works

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 31 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

Producer/Consumer Queue Stress
Test Code

TEST(stressTest, PCQ)
{
 ProducerConsumerQueue<int> queue;
 CountingProducer p1(queue, 100000);
 CountingProducer p2(queue, 120000);
 CountingProducer p3(queue, 110000);
 CountingProducer p4(queue, 140000);
 CountingProducer p5(queue, 130000);
 CountingConsumer c1(queue);

 boost::thread c(c1);

 boost::thread t1(p1);
 boost::thread t2(p2);
 boost::thread t3(p3);
 boost::thread t4(p4);
 boost::thread t5(p5);

 t5.join();
 t4.join();
 t3.join();
 t2.join();
 t1.join();

 for(int i = 0; i < 10000 && (queue.getDepth() > 0); i++)
 {
 boost::thread::yield();
 }

 LONGS_EQUAL(0, queue.getDepth());
 LONGS_EQUAL(600000, c1.getCount());

 c1.stop();

 // Stop Consumer thread by forcing it through its loop one more time after I
 // set stop to true.
 CountingProducer terminator(queue, 1);
 boost::thread tthread(terminator);
 tthread.join();

 c.join();
}

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 32 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

ProducerConsumerQueue<> code
template<class T>
class ProducerConsumerQueue
{
 public:
 ProducerConsumerQueue() {}
 ~ProducerConsumerQueue() {}

 void enqueue(T msg)
 {
 boost::mutex::scoped_lock lock(guard);
 messageQueue.push_front(msg);
 messagePending.notify_one();
 }

 bool isEmpty() const
 {
 return messageQueue.empty();
 }

 int getDepth() const
 {
 return messageQueue.size();
 }

 T dequeue()
 {
 boost::mutex::scoped_lock lock(guard);
 while(messageQueue.empty())
 {
 messagePending.wait(lock);
 }

 T msgToReturn = messageQueue.back();
 messageQueue.pop_back();

 return msgToReturn;
 }

 private:
 boost::mutex guard;
 boost::condition messagePending;
 std::deque<T> messageQueue;
};

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 33 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

DefaultRunnable tests

● ProducerConsumerQueue enables messages to
pass between threads.

● DefaultRunnable is the base class for all
ActiveObjects in system

● Problem exists in how callbacks work
– ActiveObject queues msg, giving msg a pointer

back to ActiveObject for callback

– ActiveObject depends on Msg class, and Msg
class depends on ActiveObject

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 34 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

Stupid C++ Tricks

● Private Interface Callback pattern

– Dependency cycle needs to be fixed

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 35 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

Private Interface Callback Pattern

● DefaultRunnable has public stop() method
● DefaultRunnable has private doStop() method
● DefaultRunnable has private base class
● Clients invoke stop()
● Classes calling back get DefaultRunnable

pointer as its private base, RunnableIF, and call
its public doStop() method

● Dependency cycle is broken

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 36 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

DefaultRunnable Test support code

 class ThreadedClass : public Runnable
 {
 public:
 ThreadedClass() : counter(new int(0)),
 processMessages(new bool(false)) {}
 ThreadedClass(const ThreadedClass & other)
 : Runnable(other),
 counter(other.counter),
 processMessages(other.processMessages)
 {}

 void operator()()
 {
 while(keepGoing())
 {
 if(*processMessages)
 {
 (*counter)++;
 }
 }
 }

 void start() { *processMessages = true; }

 int getCounter() const { return *counter; }

 private:
 boost::shared_ptr<int> counter;
 boost::shared_ptr<bool> processMessages;
 };

class Runnable
{
 public:
 Runnable() : keepGoingFlag(new bool(true)) {}
 Runnable(const Runnable & other)
 : keepGoingFlag(other.keepGoingFlag) {}
 virtual ~Runnable();
 virtual void operator()() = 0;
 virtual void start() = 0;
 virtual void stop() { *keepGoingFlag = false; }

 protected:
 virtual bool keepGoing() const
 {
 return *keepGoingFlag;
 }

 private:
 boost::shared_ptr<bool> keepGoingFlag;
};

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 37 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

DefaultRunnable Test support code
#2

 class ChildCallbackIF
 {
 public:
 virtual ~ChildCallbackIF();
 virtual void callMe() = 0;
 };

 ChildCallbackIF::~ChildCallbackIF() {}

 class ChildMsg : public RunnableMsg
 {
 public:
 ChildMsg(ChildCallbackIF & child_)
 : child(child_) {}
 void run() { child.callMe(); }

 ChildCallbackIF & child;
 };

class Child1 : public DefaultRunnable, private ChildCallbackIF
 {
 public:
 Child1() : counter(new int(0)) {}
 Child1(const Child1 & other)
 : DefaultRunnable(other), counter(other.counter) {}
 ~Child1() {}

 void incrementCounter()
 {
 boost::shared_ptr<RunnableMsg> msg(new ChildMsg(*this));
 queue->enqueue(msg);
 }

 int getCounter() const { return *counter; }

 private:
 boost::shared_ptr<int> counter;

 void callMe() { (*counter)++; }
 };

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 38 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

DefaultRunnable test code
TEST(testStopMsg, RunnableTest)
{
 boost::shared_ptr<Child1> child1(new Child1);

 ThreadManager mgr;
 mgr.addThread(child1);

 mgr.stopAll();

 CHECK(true);
}

TEST(counterIncremented, RunnableTest)
{
 boost::shared_ptr<Child1> child1(new Child1);

 ThreadManager mgr;
 mgr.addThread(child1);

 child1->incrementCounter();
 mgr.stopAll();

 LONGS_EQUAL(1, child1->getCounter());
}

TEST(nothingPushedUntilStartIsCalled, RunnableTest)
{
 boost::shared_ptr<ThreadedClass>
 threadedClass(new ThreadedClass);

 ThreadManager mgr;
 mgr.addThread(threadedClass);

 LONGS_EQUAL(0, threadedClass->getCounter());
}

TEST(somethingIsPushedAfterStartIsCalled, RunnableTest)
{
 boost::shared_ptr<ThreadedClass> threadedClass(new ThreadedClass);
 boost::thread ourThread(*threadedClass);

 threadedClass->start();

 ThreadManager::wait();

 CHECK(threadedClass->getCounter() > 0);
}

TEST(threadsCanBeJoinedAfterStopCalled, RunnableTest)
{
 boost::shared_ptr<ThreadedClass> threadedClass(new ThreadedClass);
 boost::thread ourThread(*threadedClass);

 threadedClass->stop();
 ourThread.join();
}

TEST(threadsCanBeCollectedAndStopped, RunnableTest)
{
 boost::shared_ptr<ThreadedClass> threadedClass1(new ThreadedClass);
 boost::shared_ptr<ThreadedClass2> threadedClass2(new ThreadedClass2);
 boost::shared_ptr<ThreadedClass> threadedClass3(new ThreadedClass);
 boost::shared_ptr<ThreadedClass2> threadedClass4(new ThreadedClass2);

 {
 ThreadManager mgr;
 mgr.addThread(threadedClass1);
 mgr.addThread(threadedClass2);
 mgr.addThread(threadedClass3);
 mgr.addThread(threadedClass4);
 }

 CHECK(true);
}

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 39 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

DefaultRunnable code
class RunnableMsg
{
 public:
 virtual ~RunnableMsg();
 virtual void run() = 0;
};

class RunnableIF
{
 public:
 virtual ~RunnableIF();
 virtual void doStop() = 0;
};

class DefaultRunnable : public Runnable, protected RunnableIF
{
 public:
 DefaultRunnable();
 DefaultRunnable(const DefaultRunnable & other);
 ~DefaultRunnable() {}

 void start() {}
 void stop();
 void operator()();

 protected:
 virtual void runNextCommand();

 boost::shared_ptr<ProducerConsumerQueue<boost::shared_ptr<RunnableMsg> > > queue;

 private:
 void doStop() { Runnable::stop(); }
};

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 40 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

DefaultRunnable code #2
namespace
{
 class StopMsg : public RunnableMsg
 {
 public:
 StopMsg(RunnableIF & callback_) : callback(callback_) {}
 void run() { callback.doStop(); }

 RunnableIF & callback;
 };
}

DefaultRunnable::DefaultRunnable()
 : Runnable(),
 queue(new ProducerConsumerQueue<boost::shared_ptr<RunnableMsg> >)
{
}

DefaultRunnable::DefaultRunnable(const DefaultRunnable & other)
 : Runnable(other),
 RunnableIF(other),
 queue(other.queue)
{
}

void DefaultRunnable::stop()
{
 boost::shared_ptr<RunnableMsg> msg(new StopMsg(*this));
 queue->enqueue(msg);
}

void DefaultRunnable::operator()()
{
 while(keepGoing())
 {
 runNextCommand();
 }
}

void DefaultRunnable::runNextCommand()
{
 boost::shared_ptr<RunnableMsg> msg = queue->dequeue();
 msg->run();
}

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 41 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

ThreadManager

● Needed a class to collect Runnables
– Add to collection

– Stop all

– Wait for all to stop

● Similar to boost::thread_group
– But did extra stuff, so I had to write my own

● Tested along with DefaultRunnable

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 42 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

ThreadManager code
class ThreadManager
{
 public:
 ThreadManager();
 ThreadManager(const ThreadManager &);
 ~ThreadManager();

 template<class RunnableType> void addThread(boost::shared_ptr<RunnableType> runnable)
 {
 runnables->push_back(runnable);

 boost::thread * t = new boost::thread(*runnable);
 threads->add_thread(t);
 }

 void stopAll()
 {
 for(vector<boost::shared_ptr<Runnable> >::iterator iter = runnables->begin();
 iter != runnables->end();
 iter++)
 {
 boost::shared_ptr<Runnable> runnable = *iter;
 runnable->stop();
 }
 threads->join_all();
 }

 void waitForAllThreadsToExit() { threads->join_all(); }
 static void wait(int yields = 100) { for(int i = 0; i < yields; i++) boost::thread::yield(); }

 private:
 boost::shared_ptr<std::vector<boost::shared_ptr<Runnable> > > runnables;
 boost::shared_ptr<boost::thread_group> threads;
};

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 43 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

Conclusions

● I started developing code in a vacuum. That
code caused me trouble. Don't do that.

● I felt pressure on site during integration to
make changes without updating/creating tests,
and succumbed to it for a while.
– After a short time (couple hours), I began to be

afraid to change my code

– I updated all tests and avoided that temptation the
rest of the trip. I was much happier.

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 44 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

Final Result

● Zero bugs in installed system
– Zero Defect Software!!

● At integration, I had a little problem for about 3
hours with a communication protocol
misunderstanding. Once fixed, it worked
immediately.

● Rest of system has worked flawlessly
● Not me, it was the process.

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 45 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

Future Projects

● Articles coming every week or so on other
features, interesting concepts, lessons learned
during this project.

● Will be posted to web each week
– http://www.agilesolutionsgroup.com

● Another project is possible right now based on
this codebase

● Changes in that project will drive further
abstraction and refactoring. I'll report back on
that later.

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 46 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

Future Articles

● Implementing Communications Protocol using
Test Driven Development Without Access to
Hardware

● Using Decorator Pattern to Add Logging to
System

● Multithreaded Unit Testing with Active
Objects

● Evolution of Label Printing and Formatting
using Boost Regexp Library

Copyright © 2003, Agile Solutions Group. All Rights Reserved. Page 47 Agile Solutions Group - http://w w w .agilesolutionsgroup.com

Feedback, please!!!

● This presentation created in a vacuum.
● You are my customers
● What questions did I leave unanswered?
● What did I explain badly or not at all?
● What else should we talk about?
● Respond on mailing list

– http://groups.yahoo.com/group/xpstl

